Onderwijstaal : Nederlands |
| Studierichting | | Studiebelastingsuren | Studiepunten | P2 SBU | P2 SP | 2de Examenkans1 | Tolerantie2 | Eindcijfer3 | |
 | 1ste bachelorjaar in de wiskunde | Verplicht | 135 | 5,0 | 135 | 5,0 | Ja | Ja | Numeriek |  |
|
| Eindcompetenties |
- EC
| EC 1: De bachelor Wiskunde bezit een grondige basiskennis en heeft inzicht in verschillende domeinen van de wiskunde waaronder algebra, meetkunde, analyse, numerieke wiskunde, kanstheorie, statistiek, aspecten van discrete wiskunde en logica. | - EC
| EC 3: De bachelor Wiskunde beheerst de formele wiskundige taal en werkwijze. Hij/zij kan met abstracte redeneringen werken. | - EC
| EC 4: De bachelor Wiskunde kan een wiskundig bewijs begrijpen, oordelen of een argument correct is en heeft inzicht in welke eigenschappen precies gebruikt worden (in de context van de verworven kennis). Hij/zij kan een lacune of een overbodige stap in een bewijs of een berekening herkennen | - EC
| EC 5: De bachelor Wiskunde kan de theorieën en methoden toepassen op relatief eenvoudige wiskundige problemen (zowel theoretische als rekentechnische). Hij/zij kan zelf wiskundige redeneringen maken en opschrijven | - EC
| EC 6: De bachelor Wiskunde kan de reeds verworven kennis integreren in nieuwe wiskundige onderwerpen. Hij/zij begrijpt de samenhang tussen onderwerpen | - EC
| EC 7: De bachelor Wiskunde kan zelfstandig nieuwe wiskundige basisteksten begrijpend lezen. | - EC
| EC 10: De bachelor Wiskunde heeft kennis van een aantal toepassingen van wiskunde.
| - EC
| EC 13: De bachelor Wiskunde is vertrouwd met Engelstalige vakliteratuur. | - EC
| EC 14: De bachelor Wiskunde heeft een kritische ingesteldheid en een onderzoekshouding.
| - EC
| EC 16: De bachelor Wiskunde is in staat te plannen, hij/zij heeft inzicht in zijn leerproces en kan dit evalueren en bijsturen. |
|
| EC = eindcompetenties DC = deelcompetenties BC = beoordelingscriteria |
|
1. Basisbegrippen van analytische meetkunde in een reële 3-ruimte: scalair product, vectorieel product, vergelijkingen van rechten, vlakken en kwadrieken. niveau-oppervlak, parametrisch oppervlak, (gladde) parameterkromme, vlakken, booglengte, kromming, Frenet-Serret coordinatenstelsel
2. Reële functies in meerdere reële veranderlijken: limiet en continuïteit (intuitief), inclusief eenvoudige eigenschappen, partiële afgeleide van willekeurige orde en toepassingen (raakvlakken, normalen, gradiënten, richtingsafgeleiden, afgeleiden van impliciet gedefinieerde functies), differentieerbaarheid.
3. Taylor benaderingen, van willekeurige orde, inclusief foutafschattingen bij lineaire benaderingen.
4. Dubbele integralen: definitie, eigenschappen en technieken om deze integralen te berekenen voor elementaire of reguliere domeinen
5. Extreme waarden bij problemen zonder of met nevenvoorwaarden, multiplicatoren van Lagrange.
6. Afgeleiden van integralen met parameters.
|
|
|
|
|
|
|
Contactmoment ✔
|
|
|
Hoorcollege ✔
|
|
|
Responsiecollege ✔
|
|
|
Zelfstudieopdracht (ZSO) ✔
|
|
|
|
Periode 2 Studiepunten 5,00 Tweede examenkans
Evaluatievorm tweede examenkans verschillend van eerste examenkans | |
|
|
 
|
Eerder aangekochte verplichte handboeken |
|
Calculus: A Complete Course,Robert A. Adams, Christopher Essex,8/9th Edition,Pearson |
|
 
|
Verplicht studiemateriaal |
|
|
|
|
|
 | 1ste bachelorjaar in de fysica | Verplicht | 135 | 5,0 | 135 | 5,0 | Ja | Ja | Numeriek |  |
|
| Eindcompetenties |
- EC
| EC 3: De bachelor Fysica kan modellen en technieken uit de fysica en andere wetenschappelijke domeinen gebruiken voor het oplossen van multidisciplinaire problemen. | - EC
| EC 7: De bachelor Fysica kan de in de fysica gebruikte wiskundige methodes toepassen en beschikt over een goede rekenvaardigheid, met inbegrip van computationele technieken en programmeervaardigheden. |
|
| EC = eindcompetenties DC = deelcompetenties BC = beoordelingscriteria |
|
1. Basisbegrippen van analytische meetkunde in een reële 3-ruimte: scalair product, vectorieel product, vergelijkingen van rechten, vlakken en kwadrieken. niveau-oppervlak, parametrisch oppervlak, (gladde) parameterkromme, vlakken, booglengte, kromming, Frenet-Serret coordinatenstelsel
2. Reële functies in meerdere reële veranderlijken: limiet en continuïteit (intuitief), inclusief eenvoudige eigenschappen, partiële afgeleide van willekeurige orde en toepassingen (raakvlakken, normalen, gradiënten, richtingsafgeleiden, afgeleiden van impliciet gedefinieerde functies), differentieerbaarheid.
3. Taylor benaderingen, van willekeurige orde, inclusief foutafschattingen bij lineaire benaderingen.
4. Dubbele integralen: definitie, eigenschappen en technieken om deze integralen te berekenen voor elementaire of reguliere domeinen
5. Extreme waarden bij problemen zonder of met nevenvoorwaarden, multiplicatoren van Lagrange.
6. Afgeleiden van integralen met parameters.
|
|
|
|
|
|
|
Contactmoment ✔
|
|
|
Hoorcollege ✔
|
|
|
Responsiecollege ✔
|
|
|
Zelfstudieopdracht (ZSO) ✔
|
|
|
|
Periode 2 Studiepunten 5,00 Tweede examenkans
Evaluatievorm tweede examenkans verschillend van eerste examenkans | |
|
|
 
|
Eerder aangekochte verplichte handboeken |
|
Calculus: A Complete Course,Robert A. Adams, Christopher Essex,8/9th Edition,Pearson |
|
 
|
Verplicht studiemateriaal |
|
|
|
|
|
 | Educatieve master in de wetenschappen en technologie - keuze voor vakdidactiek wiskunde | Keuze | 108 | 4,0 | 108 | 4,0 | Ja | Ja | Numeriek |  |
|
| Eindcompetenties |
- EC
| WET 1. De educatieve master heeft gevorderde kennis van en inzicht in de domeindisciplines relevant voor zijn specifieke vakdidactiek(en). |
|
| EC = eindcompetenties DC = deelcompetenties BC = beoordelingscriteria |
|
1. Basisbegrippen van analytische meetkunde in een reële 3-ruimte: scalair product, vectorieel product, vergelijkingen van rechten, vlakken en kwadrieken. niveau-oppervlak, parametrisch oppervlak, (gladde) parameterkromme, vlakken, booglengte, kromming, Frenet-Serret coordinatenstelsel
2. Reële functies in meerdere reële veranderlijken: limiet en continuïteit (intuitief), inclusief eenvoudige eigenschappen, partiële afgeleide van willekeurige orde en toepassingen (raakvlakken, normalen, gradiënten, richtingsafgeleiden, afgeleiden van impliciet gedefinieerde functies), differentieerbaarheid.
3. Taylor benaderingen, van willekeurige orde, inclusief foutafschattingen bij lineaire benaderingen.
4. Dubbele integralen: definitie, eigenschappen en technieken om deze integralen te berekenen voor elementaire of reguliere domeinen
5. Extreme waarden bij problemen zonder of met nevenvoorwaarden, multiplicatoren van Lagrange.
6. Afgeleiden van integralen met parameters.
|
|
|
|
|
|
|
Contactmoment ✔
|
|
|
Hoorcollege ✔
|
|
|
Responsiecollege ✔
|
|
|
Zelfstudieopdracht (ZSO) ✔
|
|
|
|
Periode 2 Studiepunten 4,00
|
 
|
Eerder aangekochte verplichte handboeken |
|
Calculus: A Complete Course,Robert A. Adams, Christopher Essex,8/9th Edition,Pearson |
|
 
|
Verplicht studiemateriaal |
|
|
|
|
|
 | 1ste bachelorjaar in de wiskunde | Overgangscurriculum | 162 | 6,0 | 162 | 6,0 | Ja | Ja | Numeriek |  |
|
| Eindcompetenties |
- EC
| EC 1: De bachelor Wiskunde bezit een grondige basiskennis en heeft inzicht in verschillende domeinen van de wiskunde waaronder algebra, meetkunde, analyse, numerieke wiskunde, kanstheorie, statistiek, aspecten van discrete wiskunde en logica. | - EC
| EC 3: De bachelor Wiskunde beheerst de formele wiskundige taal en werkwijze. Hij/zij kan met abstracte redeneringen werken. | - EC
| EC 4: De bachelor Wiskunde kan een wiskundig bewijs begrijpen, oordelen of een argument correct is en heeft inzicht in welke eigenschappen precies gebruikt worden (in de context van de verworven kennis). Hij/zij kan een lacune of een overbodige stap in een bewijs of een berekening herkennen | - EC
| EC 5: De bachelor Wiskunde kan de theorieën en methoden toepassen op relatief eenvoudige wiskundige problemen (zowel theoretische als rekentechnische). Hij/zij kan zelf wiskundige redeneringen maken en opschrijven | - EC
| EC 6: De bachelor Wiskunde kan de reeds verworven kennis integreren in nieuwe wiskundige onderwerpen. Hij/zij begrijpt de samenhang tussen onderwerpen | - EC
| EC 7: De bachelor Wiskunde kan zelfstandig nieuwe wiskundige basisteksten begrijpend lezen. | - EC
| EC 10: De bachelor Wiskunde heeft kennis van een aantal toepassingen van wiskunde.
| - EC
| EC 13: De bachelor Wiskunde is vertrouwd met Engelstalige vakliteratuur. | - EC
| EC 14: De bachelor Wiskunde heeft een kritische ingesteldheid en een onderzoekshouding.
| - EC
| EC 16: De bachelor Wiskunde is in staat te plannen, hij/zij heeft inzicht in zijn leerproces en kan dit evalueren en bijsturen. |
|
| EC = eindcompetenties DC = deelcompetenties BC = beoordelingscriteria |
|
1. Basisbegrippen van analytische meetkunde in een reële 3-ruimte: scalair product, vectorieel product, vergelijkingen van rechten, vlakken en kwadrieken. niveau-oppervlak, parametrisch oppervlak, (gladde) parameterkromme, vlakken, booglengte, kromming, Frenet-Serret coordinatenstelsel
2. Reële functies in meerdere reële veranderlijken: limiet en continuïteit (intuitief), inclusief eenvoudige eigenschappen, partiële afgeleide van willekeurige orde en toepassingen (raakvlakken, normalen, gradiënten, richtingsafgeleiden, afgeleiden van impliciet gedefinieerde functies), differentieerbaarheid.
3. Taylor benaderingen, van willekeurige orde, inclusief foutafschattingen bij lineaire benaderingen.
4. Dubbele integralen: definitie, eigenschappen en technieken om deze integralen te berekenen voor elementaire of reguliere domeinen
5. Extreme waarden bij problemen zonder of met nevenvoorwaarden, multiplicatoren van Lagrange.
6. Afgeleiden van integralen met parameters.
|
|
|
|
|
|
|
Contactmoment ✔
|
|
|
Hoorcollege ✔
|
|
|
Responsiecollege ✔
|
|
|
Zelfstudieopdracht (ZSO) ✔
|
|
|
|
Periode 2 Studiepunten 6,00 Tweede examenkans
Evaluatievorm tweede examenkans verschillend van eerste examenkans | |
|
|
 
|
Eerder aangekochte verplichte handboeken |
|
Calculus: A Complete Course,Robert A. Adams, Christopher Essex,8/9th Edition,Pearson |
|
 
|
Verplicht studiemateriaal |
|
|
|
|
|
 | 1ste bachelorjaar in de fysica | Overgangscurriculum | 162 | 6,0 | 162 | 6,0 | Ja | Ja | Numeriek |  |
|
| Eindcompetenties |
- EC
| EC 3: De bachelor Fysica kan modellen en technieken uit de fysica en andere wetenschappelijke domeinen gebruiken voor het oplossen van multidisciplinaire problemen. | - EC
| EC 7: De bachelor Fysica kan de in de fysica gebruikte wiskundige methodes toepassen en beschikt over een goede rekenvaardigheid, met inbegrip van computationele technieken en programmeervaardigheden. |
|
| EC = eindcompetenties DC = deelcompetenties BC = beoordelingscriteria |
|
1. Basisbegrippen van analytische meetkunde in een reële 3-ruimte: scalair product, vectorieel product, vergelijkingen van rechten, vlakken en kwadrieken. niveau-oppervlak, parametrisch oppervlak, (gladde) parameterkromme, vlakken, booglengte, kromming, Frenet-Serret coordinatenstelsel
2. Reële functies in meerdere reële veranderlijken: limiet en continuïteit (intuitief), inclusief eenvoudige eigenschappen, partiële afgeleide van willekeurige orde en toepassingen (raakvlakken, normalen, gradiënten, richtingsafgeleiden, afgeleiden van impliciet gedefinieerde functies), differentieerbaarheid.
3. Taylor benaderingen, van willekeurige orde, inclusief foutafschattingen bij lineaire benaderingen.
4. Dubbele integralen: definitie, eigenschappen en technieken om deze integralen te berekenen voor elementaire of reguliere domeinen
5. Extreme waarden bij problemen zonder of met nevenvoorwaarden, multiplicatoren van Lagrange.
6. Afgeleiden van integralen met parameters.
|
|
|
|
|
|
|
Contactmoment ✔
|
|
|
Hoorcollege ✔
|
|
|
Responsiecollege ✔
|
|
|
Zelfstudieopdracht (ZSO) ✔
|
|
|
|
Periode 2 Studiepunten 6,00
|
 
|
Eerder aangekochte verplichte handboeken |
|
Calculus: A Complete Course,Robert A. Adams, Christopher Essex,8/9th Edition,Pearson |
|
 
|
Verplicht studiemateriaal |
|
|
|
|
|
1 examenregeling art.1.3, lid 4. |
2 examenregeling art.4.7, lid 2. |
3 examenregeling art.2.2, lid 3.
|
Legende |
SBU : studiebelastingsuren | SP : studiepunten | N : Nederlands | E : Engels |
|